中国科学院化学研究所光化学重点实验室赵进才、陈春城、章宇超研究组发现,赤铁矿(α-Fe2O3)纳米光电催化材料表面可高效高选择性活化水分子,通过非自由基途径将水中的氧原子转移到系列有机和无机反应物上,实现了它们的高选择性氧化,从而为复杂水体中目标污染物的选择性高效去除以及化学品的高价值氧化转化提供了新策略。
前期研究中,科研人员凭借动力学同位素效应、电化学阻抗谱、原位电化学红外光谱等手段,证明了α-Fe2O3表面水分子的光电催化氧化是通过水分子亲核进攻表面FeIV=O物种机制进行,其中水分子的氧氢键断裂过程是耦合的质子/空穴转移,属于反应的决速步骤(J. Am. Chem. Soc. 2016, 138, 2705;J. Am. Chem. Soc. 2018, 140, 3264)。近日,研究进一步揭示了α-Fe2O3光电催化高选择性氧原子转移新机制,发现α-Fe2O3光电催化材料表面可高效高选择性活化水分子,通过非自由基途径将水中的氧原子转移到系列有机和无机反应物上,实现了它们的高选择性氧化,如将水中高毒性的亚硝酸盐、亚砷酸等无机污染物加氧氧化成毒性相对较低的硝酸盐和砷酸(法拉第效率分别高达86.7%和92.0%)。对于中心原子含有孤对电子的有机物,如有机硫、有机膦等,可实现高选择性(>90%)的氧化。而在相同条件下,广泛使用的TiO2光催化剂(自由基反应机理),可以将苯甲酸、马来酸等有机物有效氧化,而对这些加氧反应的选择性和法拉第效率却很低。另外,α-Fe2O3光电催化对这些羟基自由基敏感的有机物反应活性很低。研究进一步通过电化学阻抗和18O同位素示踪技术证明,α-Fe2O3表面光电催化加氧过程是通过一步两空穴的氧原子转移反应进行的,而水分子是所转移氧原子的唯一来源。这一过程避免了反应选择性差的自由基路径,从而实现了高选择性氧化加氧反应。DFT计算表明,α-Fe2O3和TiO2光电催化机制的不同源于二者迥异的表面电子结构。在α-Fe2O3表面的光生空穴主要分布在由Fe 3d和O 2p轨道组成的能级上,形成高价铁氧物种(FeIV=O),这些物种倾向于和氧原子受体发生氧原子转移反应;而TiO2的表面空穴处于O 2p轨道上形成Ti-O·物种,更易于发生单电荷转移,而引发自由基反应。
该研究突破了传统自由基型光(电)催化反应的瓶颈,为高选择性光(电)催化提供了新思路(Nature Catalysis)。研究工作得到国家自然科学基金、科技部和中科院的支持。
化学所光电催化表面氧原子转移反应研究获进展
原标题:化学所光电催化表面氧原子转移反应研究获进展