有鉴于此,来自瑞士、韩国、瑞典的国际合作者Jaeki Jeong, Minjin Kim, Jongdeuk Seo, Haizhou Lu(共同第一作者)等开发了一种阴离子工程技术,即使用赝卤化物甲酸离子(HCOO?)来抑制存在于晶界和钙钛矿薄膜表面的阴离子空位缺陷,成功获得了25.6%器件效率(为已报道的最高钙钛矿太阳能电池效率),同时器件具有长期的运行稳定性(450小时),并具有强烈的电致发光特性,外量子效率超过10%。如图1所示。
图1. 基于甲酸离子(HCOO?)工程的FAPbI3钙钛矿太阳能电池的稳定性
在FAPbI3钙钛矿光伏薄膜的成膜及相关机理研究中,该国际合作团队通过与蛋白质设施用户/上海光源的杨迎国合作,利用多尺度多维度同步辐射谱学技术揭示了甲酸离子(HCOO?)稳定α相FAPbI3钙钛矿的相关机制。在相对湿度约为100%环境下对FAPbI3薄膜进行同步辐射X射线衍射测量发现,参考样品中存在明显δ相钙钛矿,而在2%Fo-FAPbI3膜中则没有此相,这证明FAHCOO使FAPbI3的α相更加稳定,其中上海光源BL14B1和蛋白设施BL17B1线站为同步辐射X射线衍射测试提供了帮助。这些发现为消除存在于金属卤化物钙钛矿中的最丰富和有害的晶格缺陷提供了一条直接途径,为获得具有高效且长期稳定的光电性能的全溶液光伏制备技术提供了可能。
原标题:【Nature】钙钛矿太阳能电池再创效率记录!