扫描关注微信
知识库 培训 招聘 项目 政策 | 推荐供应商 企业培训证书 | 系统集成/安装 光伏组件/发电板 光伏逆变器 光伏支架 光伏应用产品
 
 
 
 
 
当前位置: 首页 » 资讯 » 技术 » 正文
 
英国班戈大学研究员提出一种方法:通过机器学习提高有机光伏(OPV)的稳定性
日期:2020-09-07   [复制链接]
责任编辑:simaran_sxj 打印收藏评论(0)[订阅到邮箱]
最近,英国班戈大学计算机科学与电子工程学院的Tudur WynDavid等研究员提出了一种从有机光伏(OPV)太阳能电池数据中提取信息的机器学习方法。在1850个器件特性、性能和稳定性数据条目组成的数据库的基础上,采用顺序最小优化回归(SMOreg)模型,用以推测太阳能电池稳定性和功率转换效率(PCE)的最大影响因素。这样的学习方法是基于属性权重分析所获取的SMOreg模型得以实现的。

值得注意的是,该分析方法可用于筛选器件结构中对稳定性和PCE有提升作用的各层活性材料,以及判断不同应力因素在OPV衰退过程中的影响力大小。在ISOS-L协议下进行的测试结果表明,光谱和活性层材料的选择对器件稳定性的影响占据主导因素,而在ISOS-D协议下进行的测试则表明,器件稳定性主要取决于材料和封装。

上述方法提供了一种快速而有效的机器学习应用方法,用以识别具有最好的稳定性和性能的功能材料。最终,该机器学习方法通过为研究人员提供材料筛选和器件优化的有效信息,避免了大量的实验和优化过程,为OPV技术的高速发展提供了助力。 

原标题:英国班戈大学研究员提出一种方法:通过机器学习提高有机光伏(OPV)的稳定性
 
扫描左侧二维码,关注【阳光工匠光伏网】官方微信
投稿热线:0519-69813790 ;投稿邮箱:edit@www.whereislife.com ;
投稿QQ:76093886 ;投稿微信:yggj2007
来源:知研光电材料
 
[ 资讯搜索 ]  [ 加入收藏 ] [ 告诉好友 ]  [ 打印本文 ]  [ 关闭窗口 ]

 
 

 
 
 
 
 
 
图文新闻
 
热点新闻
 
 
论坛热帖
 
 
网站首页 | 关于我们 | 联系方式 | 使用协议 | 版权隐私 | 网站地图 | 广告服务| 会员服务 | 企业名录 | 网站留言 | RSS订阅 | 苏ICP备08005685号