可以看出,和常规的H型电池相比,MWT电池在设计段给出了很多的灵活性,包括激光开孔的布局和数量、正面栅线和图形设计和背面电极点的分布等等。其中最有代表性的两种基本结构分别是德国FISE提出的一种较简单的仿H型布局[4]和荷兰ECN提出的星形布局[5],如图2所示:
图2(a)所示的布局实际上和常规H电池的布局看起来很相近,正面电极看起来仍然有三根较细的主栅线(宽度只有常规电池主栅线的10%),实际上每三根细栅线都连接到所谓主栅线的中心处,通过中心处的孔洞银浆和背面的主栅线连接,实际上也就是把正面的主栅线移到了背面。这种设计看起来较为简单,正面细栅线图形基本沿用了常规H型电池的图案,但为了减少细的主栅线的电阻损耗,每根主栅线上都需要10~20个孔洞,总的激光打孔数量在30~60个,过多的孔洞数量会增加打孔的时间,同时可能会对硅片产生损伤。图2(b)是荷兰ECN提出的新型布局,每片硅片采用4×4共16个单元的重复单元对称布局,每个重复单元的细栅线都汇聚到单元中心的孔洞,进一步连接到背面的银电极点,这种布局美观大方,只需要16个分布均匀的孔洞,在产业界已经被Solland、阿特斯和天威新能源等几家企业所采用。
在MWT电池制造方面,目前也有不同的方法和步骤,但一般都会增加激光打孔和孔洞保护等步骤,低功率、短波长的激光器打孔的质量最好,热损伤也很小,但速度慢、成本高,并不适合规模化的生产;高功率,长波长的激光器打孔速度最快,但热损伤大,容易产生隐裂。如
何选择最佳的激光器的功率、波长和脉宽等参数是做好MWT电池的第一步。除了激光打孔这个额外的步骤,实际上MWT电池和常规电池的工艺流程较为接近,当然在细节方面还是有所差异,图3是德国ISE研究所提出的一个p型硅MWT电池基本工艺流程[5]。