图1-1 储能电站(配合光伏并网发电应用)架构图
(2)智能控制器根据日照强度及负载的变化,不断对蓄电池组的工作状态进行切换和调节:一方面把调整后的电能直接送往直流或交流负载。另一方面把多余的电能送往蓄电池组存储。发电量不能满足负载需要时,控制器把蓄电池的电能送往负载,保证了整个系统工作的连续性和稳定性。
(3)并网逆变系统由几台逆变器组成,把蓄电池中的直流电变成标准的380V 市电接入用户侧低压电网或经升压变压器送入高压电网。
(4)锂电池组在系统中同时起到能量调节和平衡负载两大作用。它将光伏发电系统输出的电能转化为化学能储存起来,以备供电不足时使用。
其中储能单元拓扑结构及原理如图2-18,DC/DC 变换器,后级为全桥双向DC/AC变换器,该拓扑结构能够实现升压与逆变、降压与整流的解耦控制,控制简单、容易实现。当储能装置放电时,前级变换器工作于Boost升压模式,后级全桥变换器工作于逆变模式;当储能装置充电时,前级变换器工作于Buck降压模式,后级全桥变换器工作于PWM 整流模式。储能单元的工作模态根据光伏发电系统有不同的运行模式,可分为并网充电、离网充电、离网独立放电以及离网辅助放电四种工作模态。
图1-2为蓄电池储能单元的两级式拓扑结构,前级为双向Buck/Boost。
模态1:并网充电模态。并网运行模式下,蓄电池容量不足时,通过电网进行充电,为光伏发电系统离网运行模式下提供能量储备。
模态2:离网充电模态。离网运行模式下,蓄电池容量不足且光伏发电单元有多余能量输出时,对蓄电池进行充电控制。
图1-2 储能单元拓扑结构及原理图
模态3:离网独立放电模态。离网运行模式下,光伏发电单元能量不够,不足以提供电压和频率支撑而停止工作时,蓄电池单独为负荷提供所需的功率,并支撑光伏系统交流母线上的电压和频率。
模态4:离网辅助放电模态。离网运行模式下,光伏发电单元输出功率不足以满足负荷的用电需求,但能提供稳定的交流母线电压和频率,此时蓄电池储能单元辅助放电维持系统的能量平衡。
原标题:光伏发电并网加储能系统架构